A graph theoretical Gauss-Bonnet-Chern Theorem

نویسنده

  • Oliver Knill
چکیده

We prove a discrete Gauss-Bonnet-Chern theorem ∑ g∈V K(g) = χ(G) for finite graphs G = (V,E), where V is the vertex set and E is the edge set of the graph. The dimension of the graph, the local curvature form K and the Euler characteristic are all defined graph theoretically.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic Continuation, the Chern-gauss-bonnet Theorem, and the Euler-lagrange Equations in Lovelock Theory for Indefinite Signature Metrics

We use analytic continuation to derive the Euler-Lagrange equations associated to the Pfaffian in indefinite signature (p, q) directly from the corresponding result in the Riemannian setting. We also use analytic continuation to derive the Chern-Gauss-Bonnet theorem for pseudo-Riemannian manifolds with boundary directly from the corresponding result in the Riemannian setting. Complex metrics on...

متن کامل

The Gauss-Bonnet-Chern Theorem on Riemannian Manifolds

This expository paper contains a detailed introduction to some important works concerning the Gauss-Bonnet-Chern theorem. The study of this theorem has a long history dating back to Gauss’s Theorema Egregium (Latin: Remarkable Theorem) and culminated in Chern’s groundbreaking work [14] in 1944, which is a deep and wonderful application of Elie Cartan’s formalism. The idea and tools in [14] have...

متن کامل

The Gauss-Bonnet Theorem for Vector Bundles

We give a short proof of the Gauss-Bonnet theorem for a real oriented Riemannian vector bundle E of even rank over a closed compact orientable manifold M . This theorem reduces to the classical Gauss-Bonnet-Chern theorem in the special case when M is a Riemannian manifold and E is the tangent bundle of M endowed with the Levi-Civita connection. The proof is based on an explicit geometric constr...

متن کامل

Gauss-bonnet-chern Theorem on Moduli Space Zhiqin Lu and Michael R. Douglas

The moduli space of complex structures of a polarized Kähler manifold is of fundamental interest to algebraic geometers and to string theorists. The study of its geometry is greatly enriched by considering the Hodge structure of the underlying manifolds. The moduli space at infinity is particularly interesting because it is related to the degeneration of Kähler manifolds. Even when we know very...

متن کامل

Gauss-bonnet-chern Formulae and Related Topics for Curved Riemannian Manifolds

In this paper, we survey recent results on Gauss-Bonnet-Chern formulae and related issues for closed Riemannian manifolds with variable curvature. Among other things, we address the following problem: “if M is an oriented 2n-dimensional closed manifold with non-positive curvature, then is it true that its Euler number χ(M) satisfies the inequality (−1)χ(M) ≥ 0?” We will present some partial ans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1111.5395  شماره 

صفحات  -

تاریخ انتشار 2011